

Cold WFI

by membrane processes

The production of Water for Injection using the membrane process

An amendment to the European Pharmacopoeia, in force since 1 April 2017, has had a significant impact on the manufacture of Water for Injection (WFI). While up to that point only a distillation process was permitted for the generation of WFI, now a membrane-based process can also be used. In this way, Europe is mirroring America, Japan and other areas for whose markets cold manufacture has been approved for some considerable time.

Advantages of cold production

For companies that produce for the European market and are thus subject to the specifications of the European Pharmacopoeia, this may result in major financial and organisational advantages. This is because Purified Water is usually used as feed water for distillative production. Purified Water (PW) is produced separately via a reverse osmosis plant and is also subject to strict remaining ions that were able to pass through the regulations.

into a storage tank and from there distributed to the consumers via a ring main. The situation is identical for the WFI produced.

In the cold production of WFI, on the other hand, drinking water is used as feed water and WFI is produced by a single manufacturing process, with the result that significant cost savings are possible.

This results in investment, operating and monitoring costs for two monitoring costs for two different production processes, as well as for their storage and distribution systems.

A combination of reverse osmosis, electrodeionisation and ultrafiltration

For cold manufacture, the essential stages of preparation that have emerged are a combination of reverse osmosis, electrodeionisation and ultrafiltration. Reverse osmosis acts as a barrier for ions, organic contamination and microorganisms. In the subsequent electrodeionisation stage, the osmotic membrane are removed. Ultra-filtration The Purified Water produced is also first fed is integrated as a final safety stage, making sure that no endotoxins or microorganisms get into the storage tank and from there to the distributed product.

Our patent for absolute safety

Ultrafiltration represents an important process step in cold WFI generation, which we have focused on in particular: EnviroFALK PharmaWaterSystems uses very robust ceramic modules that can be continuously exposed to ozone.

We have patented this process as it ensures a robust and reliable manufacturing process as well as extended patient protection. In addition to the possibility of hot water sanitization of the entire production, ozonization of the ultrafiltration is another important measure to ensure continuous killing of microorganisms. Another positive side effect: the ozone can be fed back via the plant circulation downstream of the water pretreatment softening process and ensures a continuous reduction of microorganisms here as well.

Cold WFI production using M-WFI

The processes used in pre-treatment are chosen depending on the composition of the feed water, which can differ widely depending on the source. For this reason, the feed water quality must be assessed individually for every plant and the suitable components required for water preparation will be determined and integrated in the plant.

As a cold process, in comparison to hot distillation, is nevertheless more vulnerable to microbial growth, therefore further important measures are vital to ensuring no such growth in the plant.

EnviroFALK PharmaWaterSystems relies on the following components and design characteristics in the M-WFI plant:

- \bigcirc UV systems for reduction of microorganisms and TOC in feed water
- $\bigcirc^{\circ}_{\diamond}$ Pharma double softener or dosing of antiscalant
- Plant construction in Hygienic Design: 316L, detachable connections according to DIN 11864-3 aseptic connections

$\Diamond \circ$	Biofilm and control strategy via intelligent ala
©₀°	One- or two-stage reverse osmosis membran electrodeionization and ultrafiltration
Ôô	Fully automatic sanitizing and stand-by conc (>80°C, hot water or chemical sanitization)
Ôô	Patent: ozonizable ceramic ultrafiltration with pretreatment). Alternative: Hollow fiber ultra
00	Extensive process monitoring: several online conductivity, temperature, pressure and flow ensure absolute safety
$\Diamond^{\circ}_{\Diamond}$	Optional: online germ count monitoring

arm concept

ne system with downstream

epts

h cut-off 5,000 Dalton (ozonization possible up to afiltration 6,000 Dalton

TOC measurements (including of the feed water), measurements at various points in the plant

Block diagram M-WFI

Storage and distribution system for cold WFI

The safe storage and distribution of cold-generated WFI is the biggest challenge and requires a consistent hygienic design. The generated WFI is distributed from the storage tank to the consumers via a hygienic pump. Various measurement sensors ensure fully automatic and safe operation. Hygienic diaphragm valves are used for shut-off and withdrawal.

Preventing microbial growth

Compared to hot production, cold storage and distribution of the water is a viable option for cold WFI for energy reasons.

To prevent microbial growth, cold systems must be provided with measures to kill microorganisms and prevent their multiplication. Various methods may be used to this end. One possible method is to ozonise the tank continuously and distribution system, including the pipe non-continuously.

Alternatively or in combination with ozonization regular hot-water sanitization can be carried out at >80°C or a pressurised hot water sanitization at >121°C. Even a sterilisation with pure steam is possible.

Where discontinuous processes such as hot water sanitization are used, however, an additional, continuous process to kill microorganisms must be added by installing a UV system in the plant and keeping the circulating water at a temperature <20°C.

It also makes sense to install ultrafiltration. As in the production plant, this reliably traps microorganisms and endotoxins and can easily be installed in a bypass to the storage tank in the loop.

Cold WFI distribution C-WFI

The components of the WFI distribution include the hygienic pump(s) and DTS heat exchangers for heating and/or cooling the water. Depending on the application, individual sanitization concepts are developed together with the customer. Depending on the respective risk analysis, further components such as ozone generators and UV systems will be used. For ozone-sensitive applications, an additional ultrafiltration unit can alternatively be added to reduce endotoxins and microorganisms.

Specific material and process requirements, such as electropolishing of the stainless steel or subloop systems with cold and hot taps as well as various withdrawal management systems, can be flexibly planned and integrated. As the WFI is usually stored and distributed cold in a cold manufacturing process, extensive monitoring and reliable sanitization measures are crucial.

Comprehensive and individual service & maintenance concepts according to risk-based GMP lifecycle management

Our service promise encompasses not only advice, project planning and operational implementation, but also the reliable system maintenance, as well as a comprehensive service tailored to each and every customer. We offer flexible, comprehensive and modular service agreements designed to meet your needs perfectly. We offer the widest possible range of support, consultation, service and maintenance to ensure the best possible support for your lifecycle management of every aspect of your water treatment systems. Preventative maintenance is a key element in the lifecycle management of a water treatment system and thus a key point in our service agreements.

M-WFI technical data at a glance

Material	stainless steel 1.4404 or 1.4435, roughness <0.8 μm (optional <0.6 μm and e-polished)
Process technology	pre-treatment, 2-stage reverse osmosis, EDI, UF
Achievable output	50 - 20,000 l/h
Total yield	approx. 70 - 80%, at concentrate level approx. 85 - 90%
Ultrafiltration module type	ceramic, optional hollow fibre
Ultrafiltration cut-off	5,000 Dalton (hollow fibre 6,000 Dalton)
Ultrafiltration	optional fully automatic and logged verification of the integrity of the UF modules during operation
Sanitization of entire system	discontinuous with hot water, continuous with UV radiation
Sanitization of ultrafiltration	ozone (own patent), hot water (optional steam sterilization)
Connections	Aseptic-Clamp to DIN 11864-3 A
Valves	membrane valves (optional T-valves)
Inline/online process monitoring	TOC and conductivity (also for drinking water), flow rate, tem- perature and pressure (optional microbial count)
Control and visualization	Plant control via Simatic S7 PLC, Operation and visualization via Siemens TIA Portal (19" touch panel)
Computer validation	according to GAMP 5

C-WFI technical data at a glance

Material of storage tank	stainless steel 1.4 (optional <0.6 μm
Volume of storage tank	100 - 50,000
Level of pressure resistance	-0,49/0,49 bar or
Pump(s) in distribution system	100 - 60,000 l/h,
Sanitization of storage and distribution system	discontinuous usi ozone (loop disco
Separating out of endotoxins and microorganisms	optional via UF in
Point of use management	various concepts
Point of use cooling/ heating	automated via su
Material distribution system	stainless steel 1.4 (optional < 0.6 an
Connections	Aseptic-Clamp to
Valves	membrane valves
Inline/online process monitoring	fill level, TOC, con (optional microbia
Control and visualization	Plant control via S Operation and vis (19" touch panel)
Computer validation	according to GAN

4404 or 1.4435, roughness <0.8 μm m and e-polished)

r -1/3 bar

, optional redundant design

sing hot water, storage tank continuously with ontinuously)

n bypass to tank

available

up-loop with heater or cooler

4404 or 1.4435, roughness < 0.8 μm

nd e-polished)

DIN 11864-3 A

s (optional T-valves)

nductivity, flow rate, temperature and pressure ial count)

Simatic S7 PLC,

sualization via Siemens TIA Portal

MP 5

Our Portfolio

EnviroFALK PharmaWaterSystems is your reliable partner of water treatment plants for pharmaceutical and high purity applications.

PURIFIED WATER

- Stainless steel 316 L or PVDF-HP
- hot water sanitization
- modular design
- simple power extension

WFI MEMBRANE

- Stainless steel 316 L
- two UV units in pretreatment
- ozonizable ceramic ultrafiltration Patent
- meets all EMA requirements

WFI DISTILLATION

- Twin-Systems: WFI & Pure Steam
- Anti-Rouging Concept
- Blowdown < 1%
- Natural circulation process

PURE STEAM

- Production according to DIN EN 285
- Anti-Rouging Concept
- Blowdown< 1%
- Natural circulation process

STORAGE & DISTRIBUTION

- Turnkey Systems
- Tank and loop construction
- Hot and cold storage
- Point-of-use management system

TOC MONITORING

- Two Online Channels for PW + WFI
- Online Monitoring: Final Rinse
- Infrared spectroscopy by NDIR detection

Our Service Concept

In addition to consulting, project planning and operational implementation, our performance promise also includes reliable maintenance of the systems as well as comprehensive services tailored to our customers individual needs.

The customer is our focus - competent service for the customer is a matter close to the heart of the team at EnviroFALK PharmaWaterSystems.

HELP DESK

Depending on your requirements we offer very flexible, comprehensive and modular service contracts. In order to support your life cycle management around the water treatment plant in the best possible way, we offer you the greatest possible support and advice in the area of service & maintenance.

ULTRA PURE WATER

- modular Process plants
- High Purity Design
- ultra-low ion concentration
- particle-free, low-TOC

ENERGY - POWER TO X

- Ultrapure water for PtG process
- redundant plant technology
- modular Process plants
- high product safety

MAINTENANCE

TRAINING & EDUCATION

EnviroFALK PharmaWaterSystems GmbH Maybachstraße 29 51381 Leverkusen - Germany

Tel.: +49 2171 7675 0 Fax: +49 2171 7675 10

info@envirofalk-pharma.com www.envirofalk-pharma.com